

Spiral Model of Software Development at JPL

A presentation for the SBIRS Program Office by Douglas Hughes (Douglas.Hughes@jpl.nasa.gov)

December 5, 2002

Agenda

- Introduction
- JPL Project Architecture
- Spiral Model
- Risk Management
- Testing
- Configuration Management

- Collaborative Environment
- Measuring Progress
- ISO 9001 and Quality
- Voyager 1 & 2, Galileo &Deep Space Network
- **■** Factors for Success

- This is being presented as an overview of an area of interest and not a detailed tutorial.
- We hope to show how JPL's software development organization is a worthy partner and welcome collaborator for the SPO based on its quality product delivery system and directly related successful flight projects.
- JPL acknowledges the good work done in the by and for:
 - ☐ SEI JPO in the area of the Spiral Model
 - □ USAF Software Technology Support Center
- JPL recognizes the challenges of SBIRS LOW and shares the goals of the SPO.

Spiral Model Definition

"The spiral development model is a **risk**-driven **process model generator**. It is used to guide multi-stakeholder concurrent engineering of software-intensive systems. It has two main distinguishing features. One is a **cyclic** approach for incrementally growing a system's degree of definition and implementation while decreasing its degree of risk. The other is a set of **anchor point milestones** for ensuring stakeholder commitment to feasible and mutually satisfactory system solutions."

Dr. Barry W. Boehm

JPL Project Architecture

- JPL Project Architecture provides a solid structure for software development to transform the architecture into the correct implementation.
- The JPL Software Development process conforms to the JPL Project Architecture
 - □ JPL Official Requirement document (JPL D-23713) describes the process
 - ☐ Fully compatible with the Spiral Development Model

More Definitions

- Risk
 - Risk are situations or possible events that can cause a project to fail to meet its goals.
- Process model generator
 - □ A process model answers two main questions.
 - What should be done next?
 - For how long should it continue?
- Cyclic
 - □ See the spiral model diagram!
- Anchor point milestones
 - ☐ Life Cycle Objectives (LCO)
 - ☐ Life Cycle Architecture (LCA)
 - □ Initial Operational Capability (IOC)

Still More Definitions

- Life Cycle Objectives (LCO)
 - The system boundary represented by the set of decisions on what <u>shall</u> and <u>shall not</u> be included in the system to be developed.
- Life Cycle Architecture (LCA)
 - □ Definitions of the system, components, interfaces, configurations and constraints.
- Initial Operational Capability (IOC)
 - The first time the users will see a functioning system.

Documentation of LCO & LCA Milestones

- Operational Concept
- System Requirements
- System and Software Architecture
- Life-Cycle Plan
- Feasibility Rationale

For *each* cycle...consideration for the main cycle elements

- ☐ Critical-stakeholder objectives and constraints
- ☐ Product and process alternatives
- ☐ Risk identification and resolution
- □ Stakeholder review
- ☐ Commitment to proceed

This is but one of the six "Spiral Invariants" described by Dr. Barry Boehm.

Spiral Model Diagram

Risk Management

- SPO and JPL work together to create risk management plan and implement it
 - □ JPL official Risk Management requirement document may be a good place to start
 - □ MDA has risk management plan
 - □ USAF STSC has additional resources
 - □ DoD Risk Management Studies
- The Spiral Model can only work with continuous risk management

Testing

- Testing *is not* the last line of defense and it *is not* the only line of defense.
- Testing *is* an integrated element of the Spiral Model and is present at several stages.
- Spiral Model is designed so that the testing level of effort is driven by risk considerations.
- Project Test Plan collaboratively produced by SPO and JPL.

Configuration Management

- Configuration Management System (CMS), based on a project CM plan, is established in formulation phase of project and maintained until project is terminated.
- *All* software in CMS
 - □ Prototype
 - □ Source
 - □ Utilities
 - □ Scripts
 - □ COTS
 - □ GOTS
- *No* private copies

Collaborative Environment

- Focus on ease of use with measurable productivity gain
- Electronic libraries for all documentation
 - □ Secure Web access for stakeholders
- E-mail repository
 - □ Contains the context for many decisions
 - □ Helps to facilitate knowledge capture
- Secure instant messaging
 - □ Builds communities of practice
 - □ Non-intrusive
- Video-conferencing and shared applications as needed
- Co-location at JPL

Measuring Progress

- Earned Value Management (EVM)
 - □ Common definition from
 - NASA definition
 - DoD definition
- Common performance metrics tailored to the Spiral Model and the system
- Reports accessible to all

ISO 9001 and Quality

- JPL is the first federally funded research and development center to be certified to the ISO 9001-2000 standard.
 - ISO 9000 is a series of standards that help organizations define and maintain a quality system (JPL calls this the Product Delivery System).
 - It requires us to document how we do our work and then follow our own instructions.
- JPL's Quality Policy
 - □ JPL will deliver products that meet or exceed customer expectations, while reducing (Spiral) cycle time and cost.

- Launched in 1977 to take the "Grand Tour"
- Software upgrades (uploaded in flight) greatly extended the mission
- Planned to continue to operate and send back valuable data until at least the year 2020

Galileo

- Launched in 1989
- Complex spacecraft (plus descent probe) with 6-year flight path
- Major booster change during design phase
- 16-foot hi-gain antenna failed to deploy but new flight and ground software developed (plus DSN upgrades) resulted in science data downlinked through low-gain antennas

Deep Space Network

- Established in 1958
- 3 Facilities
 - □ Madrid
 - □ Goldstone
 - □ Canberra
- 25 years of continuous service to Voyager 1 & 2
- Now serving 11 deep space missions
- History of successful h/w and s/w system upgrades

Factors for Success

- Support for the Spiral Model starts at the top
- It is a documented requirement of the project
 - □ Project Implementation Plan
 - **☐** System Requirements
 - □ System & Software Architecture
 - □ Lifecycle Plan
- Education and training on the Spiral Model is available to all and is part of the job
- No backsliding tolerated
 - □ No Waterfall
 - □ No Code and Fix